skip to main content


Search for: All records

Creators/Authors contains: "Talia, Margherita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Simulations predict that the galaxy populations inhabiting protoclusters may contribute considerably to the total amount of stellar mass growth of galaxies in the early universe. In this study, we test these predictions observationally, using the Taralay protocluster (formerly PCl J1001+0220) at z ∼ 4.57 in the COSMOS field. With the Charting Cluster Construction with VUDS and ORELSE (C3VO) survey, we spectroscopically confirmed 44 galaxies within the adopted redshift range of the protocluster (4.48 < z < 4.64) and incorporate an additional 18 galaxies from ancillary spectroscopic surveys. Using a density mapping technique, we estimate the total mass of Taralay to be ∼1.7 × 1015 M⊙, sufficient to form a massive cluster by the present day. By comparing the star formation rate density (SFRD) within the protocluster (SFRDpc) to that of the coeval field (SFRDfield), we find that SFRDpc surpasses the SFRDfield by Δlog (SFRD/M⊙yr−1 Mpc−3) = 1.08 ± 0.32 (or ∼12 ×). The observed contribution fraction of protoclusters to the cosmic SFRD adopting Taralay as a proxy for typical protoclusters is $33.5~{{\ \rm per\ cent}}^{+8.0~{{\ \rm per\ cent}}}_{-4.3~{{\ \rm per\ cent}}}$, a value ∼2σ higher than the predictions from simulations. Taralay contains three peaks that are 5σ above the average density at these redshifts. Their SFRD is ∼0.5 dex higher than the value derived for the overall protocluster. We show that 68 per cent of all star formation in the protocluster takes place within these peaks, and that the innermost regions of the peaks encase $\sim 50~{{\ \rm per\ cent}}$ of the total star formation in the protocluster. This study strongly suggests that protoclusters drive stellar mass growth in the early universe and that this growth may proceed in an inside-out manner.

     
    more » « less
  2. ABSTRACT

    Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z ∼ 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 × 1015 M⊙, and is modelled to virialize at z ∼ 1.5−2.0. These structures contain 10 overdense peaks with >5σ overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z ∼ 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times.

     
    more » « less
  3. Abstract The 2 mm Mapping Obscuration to Reionization with ALMA (MORA) Survey was designed to detect high-redshift ( z ≳ 4), massive, dusty star-forming galaxies (DSFGs). Here we present two likely high-redshift sources, identified in the survey, whose physical characteristics are consistent with a class of optical/near-infrared (OIR)-invisible DSFGs found elsewhere in the literature. We first perform a rigorous analysis of all available photometric data to fit spectral energy distributions and estimate redshifts before deriving physical properties based on our findings. Our results suggest the two galaxies, called MORA-5 and MORA-9, represent two extremes of the “OIR-dark” class of DSFGs. MORA-5 ( z phot = 4.3 − 1.3 + 1.5 ) is a significantly more active starburst with a star formation rate (SFR) of 830 − 190 + 340 M ⊙ yr −1 compared to MORA-9 ( z phot = 4.3 − 1.0 + 1.3 ), whose SFR is a modest 200 − 60 + 250 M ⊙ yr −1 . Based on the stellar masses ( M ⋆ ≈ 10 10−11 M ⊙ ), space density ( n ∼ (5 ± 2) × 10 −6 Mpc −3 , which incorporates two other spectroscopically confirmed OIR-dark DSFGs in the MORA sample at z = 4.6 and z = 5.9), and gas depletion timescales (<1 Gyr) of these sources, we find evidence supporting the theory that OIR-dark DSFGs are the progenitors of recently discovered 3 < z < 4 massive quiescent galaxies. 
    more » « less
  4. Abstract

    We present a search for extremely red, dust-obscured,z> 7 galaxies with JWST/NIRCam+MIRI imaging over the first 20 arcmin2of publicly available Cycle 1 data from the COSMOS-Web, CEERS, and PRIMER surveys. Based on their red color in F277W−F444W (∼2.5 mag) and detection in MIRI/F770W (∼25 mag), we identify two galaxies, COS-z8M1 and CEERS-z7M1, that have best-fit photometric redshifts ofz=8.40.4+0.3and7.60.1+0.1, respectively. We perform spectral energy distribution fitting with a variety of codes (includingbagpipes,prospector,beagle, andcigale) and find a >95% probability that these indeed lie atz> 7. Both sources are compact (Reff≲ 200 pc) and highly obscured (AV∼ 1.5–2.5) and, at our best-fit redshift estimates, likely have strong [Oiii]+Hβemission contributing to their 4.4μm photometry. We estimate stellar masses of ∼1010Mfor both sources; by virtue of detection in MIRI at 7.7μm, these measurements are robust to the inclusion of bright emission lines, for example, from an active galactic nucleus. We identify a marginal (2.9σ) Atacama Large Millimeter/submillimeter Array detection at 2 mm within 0.″5 of COS-z8M1, which, if real, would suggest a remarkably high IR luminosity of ∼1012L. These two galaxies, if confirmed atz∼ 8, would be extreme in their stellar and dust masses and may be representative of a substantial population of highly dust-obscured galaxies at cosmic dawn.

     
    more » « less
  5. Abstract

    We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.

     
    more » « less
  6. Abstract

    We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5σare attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift ofz2mm=3.60.3+0.4primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz> 3 and 38% ± 12% of sources atz> 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z< 3) are far more numerous than those atz> 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300Myr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z< 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz> 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, withβ=2.20.4+0.5. The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies.

     
    more » « less
  7. null (Ed.)
    We present the first [C II] 158 μ m luminosity function (LF) at z  ∼ 5 from a sample of serendipitous lines detected in the ALMA Large Program to INvestigate [C II] at Early times (ALPINE). A study of the 118 ALPINE pointings revealed several serendipitous lines. Based on their fidelity, we selected 14 lines for the final catalog. According to the redshift of their counterparts, we identified eight out of 14 detections as [C II] lines at z  ∼ 5, along with two as CO transitions at lower redshifts. The remaining four lines have an elusive identification in the available catalogs and we considered them as [C II] candidates. We used the eight confirmed [C II] and the four [C II] candidates to build one of the first [C II] LFs at z  ∼ 5. We found that 11 out of these 12 sources have a redshift very similar to that of the ALPINE target in the same pointing, suggesting the presence of overdensities around the targets. Therefore, we split the sample in two (a “clustered” and “field” subsample) according to their redshift separation and built two separate LFs. Our estimates suggest that there could be an evolution of the [C II] LF between z  ∼ 5 and z  ∼ 0. By converting the [C II] luminosity to the star-formation rate, we evaluated the cosmic star-formation rate density (SFRD) at z  ∼ 5. The clustered sample results in a SFRD ∼10 times higher than previous measurements from UV–selected galaxies. On the other hand, from the field sample (likely representing the average galaxy population), we derived a SFRD ∼1.6 higher compared to current estimates from UV surveys but compatible within the errors. Because of the large uncertainties, observations of larger samples will be necessary to better constrain the SFRD at z  ∼ 5. This study represents one of the first efforts aimed at characterizing the demography of [C II] emitters at z  ∼ 5 using a mm selection of galaxies. 
    more » « less
  8. Abstract

    We present the survey design, implementation, and outlook for COSMOS-Web, a 255 hr treasury program conducted by the James Webb Space Telescope in its first cycle of observations. COSMOS-Web is a contiguous 0.54 deg2NIRCam imaging survey in four filters (F115W, F150W, F277W, and F444W) that will reach 5σpoint-source depths ranging ∼27.5–28.2 mag. In parallel, we will obtain 0.19 deg2of MIRI imaging in one filter (F770W) reaching 5σpoint-source depths of ∼25.3–26.0 mag. COSMOS-Web will build on the rich heritage of multiwavelength observations and data products available in the COSMOS field. The design of COSMOS-Web is motivated by three primary science goals: (1) to discover thousands of galaxies in the Epoch of Reionization (6 ≲z≲ 11) and map reionization’s spatial distribution, environments, and drivers on scales sufficiently large to mitigate cosmic variance, (2) to identify hundreds of rare quiescent galaxies atz> 4 and place constraints on the formation of the universe’s most-massive galaxies (M> 1010M), and (3) directly measure the evolution of the stellar-mass-to-halo-mass relation using weak gravitational lensing out toz∼ 2.5 and measure its variance with galaxies’ star formation histories and morphologies. In addition, we anticipate COSMOS-Web’s legacy value to reach far beyond these scientific goals, touching many other areas of astrophysics, such as the identification of the first direct collapse black hole candidates, ultracool subdwarf stars in the Galactic halo, and possibly the identification ofz> 10 pair-instability supernovae. In this paper we provide an overview of the survey’s key measurements, specifications, goals, and prospects for new discovery.

     
    more » « less